Tobacco smoke and ionizing radiation induce oxidative stress by transmitting or generating reactive oxygen species (ROS). We hypothesized that glutathione-S-transferase M1 (GSTM1) null homozgyotes would have decreased ability to neutralize ROS that might increase their susceptibility to lung cancer. A case-only design was used with lung cancer cases pooled from 3 previously completed case-control studies using archival tissue samples from 270 lung cancer cases to genotype GSTM1. Radon concentrations were measured with long-term α-track radon detectors. Secondhand smoke (SHS) was measured with questionnaires and interviews. Unconditional logistic regression was used to calculate the interaction odds ratios (OR) and 95% confidence intervals (95% CI). Radon concentrations >121 Bq m⁻³ were associated with a >3-fold interaction OR (OR = 3.41; 95% CI = 1.10, 10.61) for GSTM1 null homozygotes compared to GSTM1 carriers; the linear trend was significant (p trend = 0.03). The SHS and GSTM1 interaction OR was also elevated (OR = 2.28; 95% CI = 1.15–4.51) among never-smokers. This may be the first study to provide evidence of a GSTM1 and radon interaction in risk of lung cancer. Additionally, these findings support the hypothesis that radon and SHS promote neoplasia through shared elements of a common pathway.

© 2006 Wiley-Liss, Inc.

Key words: radon; secondhand smoke; glutathione-S-transferase; lung cancer; epidemiology

Cigarette smoking is the leading cause of lung cancer, but radon and secondhand smoke play important roles—especially among nonsmokers. Traditionally, radon and secondhand smoke (SHS) have been considered very different carcinogens: SHS has many chemical mutagens, while radon emits high linear energy transfer (LET) radiation in the form of an α-particle. However, recent evidence suggests that both may damage lung epithelia by generating reactive oxygen species. Incinerated tobacco produces large quantities of reactive oxygen species (ROS), and evidence is accumulating that high LET radiation need not traverse a cell’s nucleus in order to damage DNA. Instead, α-particles that pass through the cytoplasm may generate oxygen anions and hydrogen peroxide that produce mutations and other DNA lesions. Further, neighboring, nonirradiated cells may be damaged via a “bystander effect,” whereby, cellular signals from an irradiated cell may induce oxidative stress in adjacent nonirradiated cells. If radon and SHS operate, at least in part, through oxidative stress to induce lung carcinogenesis, then variable expression of xenobiotic metabolizing enzymes that quench ROS may affect lung cancer risk. Glutathione-S-transferases (GSTs) are important in quenching and detoxifying ROS and their derivatives. Genetic polymorphisms in genes that code for the GSTs involved in the metabolism of endogenous and exogenous compounds are of primary interest in this regard. Glutathione-S-transferase M1 (GSTM1) is notable because 38–62% of Caucasians carry a “null” allele (i.e., homozygous deletion) and do not express this enzyme. These ideas suggest that individuals with the GSTM1 null genotype may have greater risks of cancer because they are unable to detoxify certain types of reactive compounds. However, an association between GSTM1 and lung cancer has not been clearly demonstrated among either smokers or nonsmokers.

Previously, we found that GSTM1 null genotype more than doubled risk of lung cancer among never-smokers who were exposed to SHS (OR = 2.6, 95% CI = 1.1–6.1) compared to GSTM1 carriers. Since that initial report, we have collected additional cases from 2 other case-control studies of lung cancer in Missouri and Iowa. The expanded series includes smokers as well as detailed measurements of exposure to residential radon. We report here our updated findings on SHS in never-smokers, as well as initial observations linking residential radon, GSTM1 and risks of lung cancer.

Material and methods

Study population

We used a case-only study design that assumes exposure and genotype are independent in the controls, i.e., the exposure must not be associated with the genotype in the control series. Lung cancer cases were pooled from 3 case-control studies: 2 from Missouri (Missouri-I and Missouri-II) and 1 from Iowa. All 3 studies used similar methods to measure exposure to secondhand smoke, radon and potential confounders. The methods for each of these studies has been described in detail elsewhere. Briefly, lung cancer cases were identified from the Missouri and Iowa cancer registries. Cases ranged in age from 30 to 84 years. In-person interviews were used in Missouri-II and Iowa, while a telephone interview was primarily used in Missouri-I. In total, 1,755 lung cancer cases were recruited into these 3 studies. We received permission to retrieve archived tumor blocks from all the cases in all

The first two authors contributed equally to this work.

Abbreviations: CI, confidence interval; GSTM1, glutathione-S-transferase M1; LET, linear energy transfer; OR, odds ratio; Rn, radon; ROS, reactive oxygen species; SHS, secondhand smoke.

Grant sponsor: National Cancer Institute.

Correspondence to: Department of Social and Preventive Medicine, School of Public Health and Health Profession, University at Buffalo, Buffalo, NY 14214-8001, USA. Fax: +716-829-2979. E-mail: mrbonner@buffalo.edu

Received 12 July 2005; Accepted 24 February 2006

DOI 10.1002/ijc.22002

Published online 26 April 2006 in Wiley InterScience (www.interscience.wiley.com).
3 studies. However, we were only able to retrieve tumor blocks for 15% of the cases because most of the blocks were not retained by the pathology departments. Study protocols were approved by the appropriate institutional review boards and informed consent was obtained from all study participants.

Laboratory methods

Formalin-fixed, paraffin-embedded (FFPE) lung cancer tissues from therapeutic resections or diagnostic biopsies were collected from hospital pathology laboratories for 270 cases. Histologic sections were prepared using protocols to minimize contamination by tissue carry-over. Nontumor tissues were microdissected manually for germline analysis. Genomic DNA was isolated using standard methods including enzymatic digestion of proteins followed by extraction with organic solvents and precipitation with ethanol. Homozygous deletion of GSTM1 coding sequences was assayed by manual methods using updated versions of protocols that were reported previously. In brief, DNA samples from nontumor tissues were amplified in multiplex PCR reactions, and the products were examined by electrophoresis on agarose gels. Genotypes were inferred from patterns of DNA fragments in control samples. Samples collected since a previous report were assayed with newly designed PCR primers, which were developed using modern algorithms for selecting priming sites and genomic sequences of all known isomers. Thirty samples were tested with both assays: the results showed good agreement, and details are presented below. The GSTM1 assay used heminested primers and 2 rounds of amplification to examine small samples from tissue biopsies. Primers were screened for overlap (i.e., dimerization) and for homology to common repeat elements.

Genotyping assay

Homozygous deletion of GSTM1 coding sequences is commonly assayed by a multiplex PCR reaction, which includes primers for a positive control gene (i.e., XRCC1). Using this design, the absence of a product can be interpreted as GSTM1 null so long as appropriate bands from the multiplexed control are observed. However, this strategy cannot discriminate the presence of 1 or 2 alleles of GSTM1. The external GSTM1 primers amplified a 134 nucleotide segment extending from exon 5 to intron 5: forward, 5'-ggcagatctgctacaat-3' and reverse, 5'-ggcagatctgctacaat-3'. The heminested second round used the same external forward primer and a nested reverse primer (5'-gacagagtttggatttgg-3') to produce a 71 nucleotide product. The positive control gene used was XRCC1 and external XRCC1 primers amplified a 154 nucleotide segment of exon 10: forward, 5'-ggcagatctgctacaat-3' and reverse, 5'-gacagagtttggatttgg-3'. The second round used nested (overlapping) primers that produced a 142 nt product: forward, 5'-cccacacaccagcattagag-3' and reverse, 5'-gacagagtttggatttgg-3'.

Reaction mixtures

For the first round of amplification, genomic DNA (25 ng) was added to a PCR mix (20 µl total volume) composed of primers (0.4 µM, final concentration), deoxynucleoside triphosphates (200 µM, final concentration), 1.0 unit polymerase (AmpliTaq, PerkinElmer, Norwalk, CT) in AmpliTaq buffer (1X, final concentration). The second reaction round used nested or heminested primers plus the same PCR mix, except that 1.0 µl of the first round product was added as DNA template.

Thermocycling protocols

The PCR mixtures were assembled on wet ice and loaded onto a thermocycler (PE GeneAmp PCR System 9600). The thermocycling protocol used tiered (i.e., “step-down” or “touch-down”) annealing temperatures to accommodate differences and to reduce spurious priming. The first round had an initial denaturation step at 95°C for 2 min, then a total of 19 cycles of denaturation (94°C for 30 sec), annealing (45 sec) at 4 tiered temperatures, and extension (72°C for 60 sec) followed by a terminal extension reaction (72°C for 5 min). The tiered annealing temperatures were 56°C for 3 cycles, 54°C for 3 cycles, 52°C for 3 cycles and 50°C for 10 cycles. The second round was similar except for additional cycles: an initial denaturation step at 95°C for 2 min, then a total of 32 cycles of denaturation (94°C for 30 sec), annealing (45 sec) at 4 tiered temperatures, and extension (72°C for 60 sec) followed by a terminal extension reaction (72°C for 5 min). The tiered annealing temperatures were 56°C for 4 cycles, 54°C for 4 cycles, 52°C for 4 cycles and 50°C for 20 cycles.

Comparison of old and new genotyping assays

We developed a new genotyping assay for GSTM1 to test the new samples collected since our initial report. We did this because modern primer design software showed that our previous assay—originally reported in 1997—formed stable primer dimers, which reduce the sensitivity of PCR-based assays. To compare the 2 assays, we collected 30 samples that were analyzed by the old method, and we analyzed them with the new assay. When we compared the results, we found 90% concordance between the assays: there was complete agreement in 7 GSTM1 present cases and 11 GSTM1 null cases, but 2 formerly null cases showed evidence of at least 1 GSTM1 allele in the new assay. Furthermore, the new protocol provided genotypes for 9 of 10 samples that had failed to amplify previously. These findings indicate that the new assay is equally specific, but more sensitive than the previous protocol.

Exposure assessment

Radon dosimetry for these studies has been described elsewhere. Briefly, radon concentrations were measured in Missouri-I and Iowa using α-track radon detectors placed in these residences for a 1 year period. Iowa included only cases who resided at their current address for 20 or more years, while the Missouri-I study attempted to measure radon in all previous addresses in the 30 years prior to diagnosis. The Missouri-II study used 2 methods to measure residential radon. Similar to the Iowa and Missouri-I studies, 2 air-based α-track detectors were placed in current residences for 1 year. Annual time-weighted averages were calculated as the sum of the mean radon concentration of all the homes weighted by the years of residence spent in each home using the air-based α-track detector measurements. In addition to these air-based measurements, Missouri-II derived radon concentrations using the glass-based dosimeters. This method measures decay of polonium-210, a decay product of radon that can embed in glass objects. The main advantages of glass-based dosimetry are (i) it provides a time-weighted estimate of radon exposure that is proportional to the age of the glass object and (ii) it eliminates the need to collect air samples from 30 years worth of domiciles. The time-weighted average concentration of radon was reported as Becquerel per cubic meter (Bq m⁻³) where 37 Bq m⁻³ is equivalent to 1 pCUL.

Exposure to secondhand smoke was assessed by telephone interviews for Missouri-I and in person interviews for Missouri-II and Iowa studies. For Missouri I and II, exposure to SHS was estimated quantitatively, whereby pack-years of exposure to cigarette smoke was calculated as the product of the number of packs of cigarettes a spouse smoked in confined spaces and the number of years this occurred. In Iowa, this quantitative metric was not used; however, SHS was estimated qualitatively as ever or never exposed to SHS.

Statistical analysis

The case-only design was used to examine whether there were interactions between exposure to residential radon, GSTM1 and lung cancer. We also examined SHS exposure, GSTM1 and lung cancer. Student’s t-tests were used to determine statistical differences in continuous variables between GSTM1 null and GSTM1 present cases, while the χ² statistic was used for categorical variables. Unconditional logistic regression was used to calculate the
interaction odds ratios (OR) and 95% confidence intervals (95% CI). In a traditional logistic regression approach, the probability of being a case is modeled for a dichotomous dependent variable (i.e., case or control). Because of the case-only study design, we used a logistic model to estimate the probability of being a GSTM1 null homozygote where GSTM1 null homozygotes are analogous to cases and GSTM1 carriers are analogous to controls in a traditional logistic model. The interaction OR measures the degree to which the joint effect of the environmental exposure and the gene depart from what would be expected by the product of the gene OR alone and the exposure OR alone. In the absence of a gene-environment interaction, the interaction OR would be equal to one.19

Exposure to radon was categorized into quartiles based on the distributions among those with the null GSTM1 genotype. The fourth quartile of radon was further divided at the median. SHS exposure was categorized into tertiles among the GSTM1 null cases with SHS exposure; the referent group consisted of cases with no exposure to spousal SHS. In addition, SHS was dichotomized as ever or never exposed residential SHS.

Multivariable statistical models were adjusted for age. When radon was treated as the exposure variable, the models were further adjusted for SHS exposure (ever/never) and pack-years of active smoking. When SHS was treated as the exposure variable, the analysis was restricted to never active smokers and the models were further adjusted for radon exposure. In addition, we stratified both SHS and radon exposure models by histology to assess potential effect modification. The p for trend (two-sided) was determined by the p-value for the coefficient of the continuous exposure variable, while adjusting for covariates.

Results

Archival, formalin-fixed tissue samples were collected for 270 lung cancer cases, and GSTM1 genotyping results were determined for 267 (99%). Among the 267 genotypes, 106 were reported previously in a study of SHS and nonsmokers,16 and 161 are new findings from new samples using a new assay. Overall, 52% of cases had homzygous deletion (GSTM1 null).

A comparison of participants for whom we retrieved tumor blocks and those for whom we could not, revealed similarities between age, education and secondhand smoke exposure (Table I). There was a statistically significant difference with regards to residential radon exposure. Although the difference was small, only 18.5 Bq m⁻³, the biological effect on risk would be minimal. That is, if 100 Bq m⁻³ increases risk only 11% then a difference of 18.5 Bq m⁻³ would correspondingly increase risk only 2.0% and this excess risk is unlikely to substantially bias the interaction ORs. Participants with tumor blocks were more likely to be never smokers, have adenocarcinoma, and have fewer pack-years of smoking. These differences arose because never-smokers were purposely selected to facilitate the examination of SHS exposure and GSTM1 genotype on lung cancer risk.

Descriptive characteristics of the study cases are shown in Table II. There were no statistical differences between GSTM1 null and GSTM1 present lung cancer cases, with the exception of radon concentration. In this instance, the GSTM1 null cases' mean exposure was 70.3 Bq m⁻³, while GSTM1 present cases' mean exposure was 55.5 Bq m⁻³. There was little difference between the subjects included in this study and those included in the previous analyses conducted by Bennett et al.16

Radon exposure greater than 121 Bq m⁻³ was associated with greater than a 3-fold increase in the interaction OR (OR = 3.41; 95% CI = 1.10–10.61) for those with a GSTM1 null genotype (Table III). The test of linear trend was significant (p trend = 0.03). The overall association between radon and GSTM1 null genotype was similar when we only considered the air-based radon measurements (p for trend = 0.03), although the trend was not monotonic. However, because the air-based measurements were lower on average than the glass-based measurements, cases in the upper exposure categories tended to shift downward and the resulting interaction OR in the highest exposure category (OR = 2.89; 95% CI = 1.13–7.40) was slightly attenuated compared to the glass-based radon measurements (data not shown).

To further control for potential confounding by smoking, we stratified by active smoking status. The exposure-interaction patterns generally increased with increasing radon exposure and were similar between never, former and current smokers, although the estimates were unstable within strata because of small numbers (data not shown). In addition, the cases were stratified by histology (adenocarcinoma and other) to determine whether radon exposure was associated with specific histologic subtypes. An interaction between radon and GSTM1 null genotype was most evident with adenocarcinoma, although the interaction estimates were unstable because of small sample size. The interaction estimates for the other histologies combined were difficult to interpret because of small numbers (data not shown). When stratified by study, results were similar between the 2 Missouri studies. Iowa, on the other hand, only contributed 14 cases and the sample size was too small to evaluate the relationship between radon, GSTM1 and lung cancer in that study separately.

Table I – SELECTED CHARACTERISTICS OF LUNG CANCER CASES BY TUMOR BLOCK STATUS

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>FFPE block (n = 267)</th>
<th>No FFPE block (n = 1485)</th>
<th>p value¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24</td>
<td>68.0 ± 10.6</td>
<td>67.9 ± 10.0</td>
<td>0.84</td>
</tr>
<tr>
<td>25-34</td>
<td>64.1 ± 48.6</td>
<td>82.6 ± 89.6</td>
<td>0.002</td>
</tr>
<tr>
<td>35-44</td>
<td>20.1 ± 31.5</td>
<td>33.7 ± 32.4</td>
<td><0.001</td>
</tr>
<tr>
<td>45-54</td>
<td>18.2 ± 26.4</td>
<td>22.6 ± 32.7</td>
<td>0.12</td>
</tr>
<tr>
<td>Education (years)³</td>
<td>18.5 Bq m⁻³</td>
<td>26.4 ± 32.7</td>
<td>0.12</td>
</tr>
<tr>
<td><12</td>
<td>86 (33.2)</td>
<td>467 (32.2)</td>
<td>0.35</td>
</tr>
<tr>
<td>12</td>
<td>108 (41.7)</td>
<td>658 (45.5)</td>
<td></td>
</tr>
<tr>
<td>>12</td>
<td>65 (25.1)</td>
<td>322 (22.3)</td>
<td></td>
</tr>
<tr>
<td>Smoking status</td>
<td>18.5 Bq m⁻³</td>
<td>26.4 ± 32.7</td>
<td>0.12</td>
</tr>
<tr>
<td>Never</td>
<td>160 (60.0)</td>
<td>388 (25.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Former</td>
<td>35 (13.3)</td>
<td>597 (40.0)</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>69 (26.1)</td>
<td>508 (34.0)</td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td>18.5 Bq m⁻³</td>
<td>26.4 ± 32.7</td>
<td>0.12</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>164 (64.8)</td>
<td>540 (44.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Nonadenocarcinoma</td>
<td>89 (35.2)</td>
<td>677 (55.6)</td>
<td></td>
</tr>
</tbody>
</table>

¹Values are number (%) unless otherwise indicated.—FFPE, formalin fixed, paraffin embedded.—Differences in means across categories assessed with Student’s t-test; differences in categorical variables assessed with χ².—Among never active smokers only.

Table II – SELECTED CHARACTERISTICS OF LUNG CANCER CASES BY GLUTATHIONE-S-TRANSFERASE (GSTM1) GENOTYPE

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>GSTM1 null (n = 138)</th>
<th>GSTM1 present (n = 129)</th>
<th>p value²</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24</td>
<td>68.3 ± 10.2</td>
<td>67.7 ± 10.9</td>
<td>0.63</td>
</tr>
<tr>
<td>Radon (Bq m⁻³)</td>
<td>70.3 ± 55.5</td>
<td>55.5 ± 37.0</td>
<td>0.01</td>
</tr>
<tr>
<td>Smoking (pack-years)</td>
<td>20.1 ± 32.2</td>
<td>20.1 ± 30.8</td>
<td>0.99</td>
</tr>
<tr>
<td>Study</td>
<td>Missouri-I</td>
<td>Missouri-II</td>
<td>Iowa</td>
</tr>
<tr>
<td>Missouri-I</td>
<td>73 (53.3)</td>
<td>59 (46.5)</td>
<td>0.50</td>
</tr>
<tr>
<td>Missouri-II</td>
<td>55 (40.2)</td>
<td>61 (47.2)</td>
<td></td>
</tr>
<tr>
<td>Iowa</td>
<td>10 (6.6)</td>
<td>9 (6.3)</td>
<td></td>
</tr>
<tr>
<td>Education (years)³</td>
<td>18.5 Bq m⁻³</td>
<td>26.4 ± 32.7</td>
<td>0.12</td>
</tr>
<tr>
<td><12</td>
<td>45 (33.1)</td>
<td>41 (33.3)</td>
<td>0.45</td>
</tr>
<tr>
<td>12</td>
<td>58 (42.7)</td>
<td>50 (40.7)</td>
<td></td>
</tr>
<tr>
<td>>12</td>
<td>33 (24.3)</td>
<td>32 (26.0)</td>
<td></td>
</tr>
<tr>
<td>Smoking status</td>
<td>18.5 Bq m⁻³</td>
<td>26.4 ± 32.7</td>
<td>0.12</td>
</tr>
<tr>
<td>Never</td>
<td>88 (64.2)</td>
<td>72 (56.7)</td>
<td>0.45</td>
</tr>
<tr>
<td>Former</td>
<td>16 (11.7)</td>
<td>19 (15.0)</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>33 (24.1)</td>
<td>36 (28.4)</td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td>18.5 Bq m⁻³</td>
<td>26.4 ± 32.7</td>
<td>0.12</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>91 (67.9)</td>
<td>73 (61.3)</td>
<td>0.28</td>
</tr>
<tr>
<td>Nonadenocarcinoma</td>
<td>43 (32.1)</td>
<td>46 (38.7)</td>
<td></td>
</tr>
</tbody>
</table>

²Values are number (%) unless otherwise indicated.—Differences in means across categories assessed with Student’s t-test; differences in categorical variables assessed with χ².
The interaction between ever having been exposed to SHS and having a GSTM1 null genotype was 2.28 (95% CI 1.15–4.51) (Table IV). Further, there was a statistically significant test of linear trend with SHS exposure (p trend = 0.02), although the trend was not monotonic across the categories of SHS exposure. Results were similar when the analysis was restricted to the newly accrued cases obtained from the 2 Missouri studies separately. There were too few cases from the Iowa study to examine the exposure-interaction separately. Further, there was no indication of confounding by study because when we included study in the model there was little effect on the interaction estimates.

It has been clear for some time that high concentrations of radon cause lung cancer in underground miners. Conversely, the results from individual population-based studies investigating residential radon exposure have not been definitive because of weak point estimates and relatively wide CI. This could be a result of the difficulty in measuring long-term residential radon exposure and low statistical power to detect relatively small ORs. To address some of the difficulties in studying low-dose residential radon exposure and lung cancer risk, a pooled analysis of North American radon studies combined 3,662 cases and 4,966 controls, and found evidence that for every 100 Bq m\(^{-3}\) (2.7 pCi/L) increase in radon concentration, the excess risk of lung cancer increased 11% (95% CI = 0.00–0.28). Similarly, a pooled analysis of 13 European studies found 8.4% increase in the risk of lung cancer for every 100 Bq m\(^{-3}\) in radon concentration.

We also observed a gene-environment interaction between SHS exposure and GSTM1 null genotype. These additional data support our earlier observation from a smaller series of never-smokers, although the original series of 106 cases accounts for two-thirds of the current group of 157. However, our finding was replicated in two case-control studies from Japan and Detroit. The Japanese study found a 2-fold joint effect for nonsmoking, GSTM1 null women who were married to heavy smokers. The Detroit series of 94 female and 70 male never-smokers also found a 2-fold joint effect for GSTM1 null individuals who were exposed to at least 20 years of SHS. Significant, but less direct, confirmation came from 2 studies of indoor air pollution from stoves burning coal or wood. Two negative European studies might be explained by their small numbers of never-smokers (i.e., low statistical power).

We continued to find evidence of an interaction between SHS exposure and GSTM1 genotype on the risk of lung cancer. The association was also evident among the newly acquired cases, although the number of these cases was too small for a separate analysis on these cases alone. Our finding of a 2.28-fold interaction for never vs. ever-exposure to SHS and GSTM1 null genotype is much higher than risk estimates for active smoking. For example, a recent meta-analysis surveyed 43 case-control studies with more than 18,000 subjects and found a 1.17-fold risk for active smokers with the GSTM1 null genotype. This comparison of risks from active and passive smoking raises a question: how can a single genetic trait magnify a low-dose exposure, but seemingly neutralize a heavy one? A similar paradox of diminishing risk with...
increasing exposure has been observed in the dose-response between cancer and cigarette smoking: risk tends to plateau above a dose of 20–25 cigarettes per day. Several explanations have been proposed: (i) recall bias: heavy smokers may under-report their smoking if they get cancer, (ii) behavior modification: shallow inhalation by heavy smokers and (iii) genetic heterogeneity: genetic variants in certain genes may render individuals more susceptible to low-dose effects from environmental exposures thereby increasing the likelihood of developing lung cancer. This last theory has been tested by applying traditional biochemical principles to published studies of lung and bladder cancer. By modeling the kinetics of metabolic enzymes, such as glutathione and acetyltransferases, Vineis et al. found that subtle differences in substrate affinity could produce a counter-intuitive dose-response at low levels of exposure. They concluded that the differential risks conferred by genetic variants will be most apparent at low intensity exposures, such as SHS. Although cancer susceptibility is more complicated than enzyme kinetics, our finding of a genetic subpopulation with unexpectedly high risks from passive smoking is a plausible manifestation of a low dose effect.

The interaction OR generated from the analysis of a case-only study measures the degree to which the joint effect of the environmental exposure and gene depart from the expected product of the two factors on lung cancer risk because the case-only design cannot estimate these measures of association.

Several limitations may have biased our results. Tumor blocks were available for 15% (270/1,755) of the total case series from all 3 studies. The relatively small proportion of the total cases available for 15% (270/1,755) of the total case series from the 2 protocols did not appreciably bias the interaction OR estimates.

In addition, we conducted a sensitivity analysis by examining the effect that each assay protocol had on the interactions between exposure (radon and SHS) and GSTM1 null lung cancer separately. Further, the product terms for exposure and protocol were added to the models to formally test for heterogeneity of the interaction between the 2 protocols. The interaction ORs for each genotype protocol were similar for both radon and SHS exposure and the test for heterogeneity between the 2 protocols were not significant (p heterogeneity = 0.84 and 0.88 for radon and SHS, respectively), suggesting that aggregating the GSTM1 genotypes from the 2 protocols did not appreciably bias the interaction OR estimates.

In summary, exposure to residential radon interacted with GSTM1 null genotype to increase the risk of lung cancer. In addition, we continued to find an association between SHS and GSTM1 null genotype in never smokers. It has been hypothesized that radon and tobacco smoke operate through oxidative DNA damage to potentiate lung cancer. Our study supports this hypothesis that SHS and radon may be operating through similar pathways that include GSTM1.

Acknowledgements
Laboratory analyses were supported by Beckman Research Institute at City of Hope in Duarte, CA.

References

